
Pulse Secure Virtual Traffic Manager:
Configuration Importer Guide

Copyright Notice

This document is provided strictly as a guide. No guarantees can be provided or expected. This
document contains the confidential information and/or proprietary property of Ivanti, Inc. and its
affiliates (referred to collectively as “Ivanti”) and may not be disclosed or copied without prior written
consent of Ivanti.

Ivanti retains the right to make changes to this document or related product specifications and
descriptions, at any time, without notice. Ivanti makes no warranty for the use of this document and
assumes no responsibility for any errors that can appear in the document nor does it make a
commitment to update the information contained herein. For the most current product information,
please visit www.Ivanti.com.

Copyright © 2024 Ivanti, Inc. All rights reserved.

Protected by patents, see https://www.ivanti.com/patents.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 2 of 44

http://www.ivanti.com/
https://www.ivanti.com/patents
http://www.ivanti.com/company/legal

Contents

Preface 5
Document conventions 5
Requesting Technical Support 6

Introduction 8
About the Configuration Importer 8
About the Configuration Importer 9
One-Time Import 9
Full Configuration Management 10

Basic Usage 11
Introducing Configuration Documents 11
Structuring Configuration Documents for Import 13
One-time Configuration Import Example 13
Fully Managed Configuration Example 15
Object References 17

Troubleshooting 19
Syntax Errors 19
Semantic Errors 20
Audit Logs 20

Relationship to Other Configuration Interfaces 22
Comparison with the REST API 23

YAML vs JSON 23
Object Structure 23
Creating Multiple Configuration Objects 24
Defining Configuration Specific to a Traffic Manager Instance 24
Unstructured Resources 25
Validation 26

Importing Configuration into a Cluster 27
Replicating Configuration 27
Independent Cluster Members 27

Changing Settings that Require a Restart 28
Software Restarts 28
Host Instance Reboots 28

Constructing Configuration Documents 29
Exporting a Configuration Document From the Admin UI 29
Exporting a Configuration Document From the Command-line 31

Layering Configuration Documents 33
Object References 36

Referencing External Objects 36
Supported valueFrom Methods 37
Changes to Referenced Objects 37
Example: Importing TLS Certificates from Kubernetes Secrets 37

Snapshots 39

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 3 of 44

http://www.ivanti.com/company/legal

Introducing Configuration Snapshots 39
Snapshotting Configuration in Docker 39
Snapshotting Configuration in Other Deployments 41

Stateful Settings 42
Upgrades 43

Importing Configuration to Upgraded Traffic Managers 43
Upgrading Traffic Managers with Imported Configuration 43

Configuration Document Versioning 44

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 4 of 44

http://www.ivanti.com/company/legal

Preface

Document conventions
The document conventions describe text formatting conventions, command syntax conventions, and
important notice formats used in Ivanti technical documentation.

Text formatting conventions

Text formatting conventions such as boldface, italic, or Courier font may be used in the flow of the text
to highlight specific words or phrases.

Format Description

bold text Identifies command names

Identifies keywords and operands

Identifies the names of user-manipulated GUI elements

Identifies text to enter at the GUI

italic text Identifies emphasis

Identifies variables

Identifies document titles

Courier Font Identifies command output

Identifies command syntax examples

Command syntax conventions

Bold and italic text identify command syntax components. Delimiters and operators define groupings of
parameters and their logical relationships.

Convention Description

bold text Identifies command names, keywords, and command options.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 5 of 44

Preface

http://www.ivanti.com/company/legal

Convention Description

italic text Identifies a variable.

[] Syntax components displayed within square brackets are optional.
Default responses to system prompts are enclosed in square brackets.

{ x | y | z } A choice of required parameters is enclosed in curly brackets
separated by vertical bars. You must select one of the options.

x | y A vertical bar separates mutually exclusive elements.

< > Non-printing characters, for example, passwords, are enclosed in angle
brackets.

... Repeat the previous element, for example, member[member...].

\ Indicates a “soft” line break in command examples. If a backslash
separates two lines of a command input, enter the entire command at
the prompt without the backslash.

Notes and Warnings

Note, Attention, and Caution statements might be used in this document.

A Note provides a tip, guidance, or advice, emphasizes important information, or provides a
reference to related information.

Attention

An Attention statement indicates a stronger note, for example, to alert you when traffic might be
interrupted or the device might reboot.

Caution

A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage
to hardware, firmware, software, or data.

Requesting Technical Support
Technical product support is available through the Ivanti Support Center. If you have a support contract,
file a ticket support.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 6 of 44

Preface

http://www.ivanti.com/company/legal

• Product warranties—For product warranty information, visit
https://forums.ivanti.com/s/contactsupport?language=en_US/product-service-policies/

Self-Help Online Tools and Resources

For quick and easy problem resolution, Ivanti provides an online self-service portal called the Support
Center that provides you with the following features:

• Find CSC offerings: https://forums.ivanti.com/s/contactsupport?language=en_US

• Search for known bugs: https://forums.ivanti.com/s/contactsupport?language=en_US

• Find product documentation: https://www.ivanti.com/support/product-documentation

• Download the latest versions of software and review release notes:
https://forums.ivanti.com/s/contactsupport?language=en_US

• Open a case online in the support Case Management tool:
https://forums.ivanti.com/s/contactsupport?language=en_US

• To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE)
Tool: https://forums.ivanti.com/s/contactsupport?language=en_US

For important product notices, technical articles, and to ask advice:

• Search the Knowledge Center for technical bulletins and security advisories:
https://forums.ivanti.com/s/searchallcontent?language=en_
US#t=KNOWLEDGE%20BASE&sort=relevancy

• Ask questions and find solutions at the Ivanti Community online forum:
https://forums.ivanti.com/s/?language=en_US

Opening a Case with Support

You can open a case with support on the Web or by telephone.

• Use the Case Management tool in the support at
https://forums.ivanti.com/s/contactsupport?language=en_US.

For international or direct-dial options in countries without toll-free numbers, see
https://forums.ivanti.com/s/contactsupport?language=en_US

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 7 of 44

Preface

https://support.pulsesecure.net/product-service-policies/
https://support.pulsesecure.net/
https://support.pulsesecure.net/
https://www.pulsesecure.net/techpubs
https://support.pulsesecure.net/
https://support.pulsesecure.net/
https://support.pulsesecure.net/
https://kb.pulsesecure.net/
https://kb.pulsesecure.net/
https://community.pulsesecure.net/
https://support.pulsesecure.net/
https://support.pulsesecure.net/support/support-contacts/
http://www.ivanti.com/company/legal

Introduction
This chapter introduces the Pulse Secure Virtual Traffic Manager (the Traffic Manager) Configuration
Importer tool.

About the Configuration Importer
The Configuration Importer is a tool that accepts administrator-supplied configuration documents and
imports the configuration described in those documents into the Traffic Manager, replacing its previous
running configuration. Configuration documents are intended to define the entire Traffic Manager
configuration.

Configuration documents are typically stored in a system external to the Traffic Manager, and mounted
or mapped into the Traffic Manager host's file system such that the Configuration Importer can read
them.

The Configuration Importer supports two primary modes of operation:

• A one-time import

• Full configuration management

To learn more about both modes of operation, read the remainder of this chapter.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 8 of 44

Introduction

http://www.ivanti.com/company/legal

About the Configuration Importer
The Configuration Importer is a tool that accepts administrator-supplied configuration documents and
imports the configuration described in those documents into the Traffic Manager, replacing its previous
running configuration. Configuration documents are intended to define the entire Traffic Manager
configuration.

Configuration documents are typically stored in a system external to the Traffic Manager, and mounted
or mapped into the Traffic Manager host's file system such that the Configuration Importer can read
them.

The Configuration Importer supports two primary modes of operation:

• A one-time import

• Full configuration management

To learn more about both modes of operation, read the remainder of this chapter.

One-Time Import
The Configuration Importer tool can initialize or reset a Traffic Manager’s configuration to a pre-defined
state in a single operation. This is known as a one-time import.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 9 of 44

Introduction

http://www.ivanti.com/company/legal

An administrator or orchestration tool (such as Docker or Kubernetes) might use a one-time import to
deploy and configure a Traffic Manager in a single step. For example, a Traffic Manager Docker
container can be deployed in a fully configured state from a single "docker run" command.

The one-time import can also be used to reset a running Traffic Manager's configuration to a specific
state.

Full Configuration Management
The Traffic Manager can use the Configuration Importer tool for fully-managed configuration updates,
where the Traffic Manager monitors mapped configuration documents and automatically updates its
configuration when a change is detected.

In this mode of operation, the configuration documents become the primary definition of the entire
Traffic Manager configuration. The Configuration Importer detects whenever the primary configuration
documents change and automatically updates the Traffic Manager configuration accordingly.

Instead of making iterative sequential changes through the Traffic Manager's Admin UI or APIs, an
administrator makes changes by editing the configuration documents to the desired new state.

This externally-maintained declarative configuration is often appropriate for environments that use
automated deployment and orchestration tools. If a Traffic Manager needs to be destroyed and re-
created, the information needed to recreate its configuration is not lost because the primary copy is
held in an external location.

Configuration documents can be stored in, and deployed from, a version control system supporting a
DevOps style of working that reduces the need for direct interaction with individual Traffic Manager
instances.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 10 of 44

Introduction

http://www.ivanti.com/company/legal

Basic Usage
This chapter provides an overview of how to use the Configuration Importer.

Introducing Configuration Documents
Configuration documents describe Traffic Manager configuration in a syntax that allows an
administrator to create, read, alter, and maintain configuration definitions within version control
systems. The configuration is expressed in either YAML (YAML Ain’t Markup Language) or JSON
(JavaScript Object Notation) format, based upon the REST API schema defined in the Pulse Secure
Virtual Traffic Manager: REST API Guide.

The following example configuration document describes a simple Traffic Manager configuration,
containing a single virtual server and a TrafficScript rule, in both YAML and JSON formats:

example-config.yaml example-config.json

version: 6.1

virtual_servers:

- name: example-service

properties:

basic:

enabled: true

port: 80

protocol: http

pool: discard

request_rules: [basic-

response]

rules:

- name: basic-response

content: |

http.sendResponse("200 OK",

"text/plain", "Hello

World\n",

 "X-Served-By: Ivanti vTM");

{

"version": 6.1,

"virtual_servers": [

{

"name": "example-service",

"properties": {

"basic": {

"enabled": true,

"port": 80,

"protocol": "http",

"pool": "discard",

"request_rules": [

"basic-response"

]

}

}

}

],

"rules": [

{

"name": "basic-response",

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 11 of 44

Basic Usage

http://www.ivanti.com/company/legal

example-config.yaml example-config.json

"content": "http.sendResponse

(\"200 OK\", \"text/plain\",

\"Hello World\\n\",

 \"X-Served-By: Ivanti

vTM\");\n"

}

]

}

Configuration documents have a few key differences to the REST API format. The following table lists
some key concepts and a comparison of how they are implemented in configuration documents and
the REST API:

Concept Configuration Documents REST API

Configuring
Multiple Objects

A configuration document can
describe many resources of different
types together in a single document.

Each object has its own API endpoint.
Multiple API calls are needed to
configure multiple objects.

Unstructured
Resources

The content for unstructured
resources, such as TrafficScript rules, is
expressed inline in the "content" field.

The resource is uploaded to the
object's API endpoint with a content-
type of "octet-stream" instead of
JSON.

Declarative VS
Imperative

Configuration documents express the
desired state of the Traffic Manager in
its entirety.

REST API calls make incremental
changes to the existing configuration.

For a more detailed description of the differences between configuration documents and the REST API,
see Comparison with the REST API.

To learn more about YAML, see www.yaml.org. To learn more about JSON, see www.json.org.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 12 of 44

Basic Usage

http://www.yaml.org/
http://www.json.org/
http://www.ivanti.com/company/legal

Structuring Configuration Documents for Import
The Configuration Importer runs from a base directory and looks for configuration documents in a
subdirectory named "config". Other supporting files and directories can be added to the base directory
and referenced from the configuration documents. For more details on referencing external files from
within configuration documents, see Object References.

The following is an example directory structure:

/import/

├── config/

| ├── configuration-document-1.yaml

| ├── configuration-document-2.yaml

| ...

├── data/

| ├── my-rule.zts

| └── catalog.json

├── secrets/

| └── db-password

└── tls/

└── example-service/

├── tls.key

└── tls.crt

When the Configuration Importer is fully managing the configuration, changes to any files under the
base directory result in the Traffic Manager's configuration being updated.

The base directory must be visible in the file system of the Traffic Manager. The Configuration Importer
expects that the contents of the directory are populated from an external system; for example, being
mounted or mapped into the Traffic Manager's filesystem from a persistent volume, or pulled from an
external repository.

One-time Configuration Import Example
The following example shows how to perform a one-time configuration import within Docker, and
additionally how to invoke the Configuration Importer on standard deployments.

Save the following sample YAML configuration document as the file "./import/config/example-
config.yaml":

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 13 of 44

Basic Usage

http://www.ivanti.com/company/legal

example-config.yaml

version: 6.1

virtual_servers:

- name: example-service

properties:

basic:

enabled: true

port: 80

protocol: http

pool: discard

request_rules: [basic-response]

rules:

- name: basic-response

content: |

http.sendResponse("200 OK", "text/plain", "Hello World\n", "X-Served-

By: Ivanti vTM");

Example Docker Deployment

When deploying the Traffic Manager container, mount the "import" directory as a volume and specify
the mount path in the ZEUS_BASE_CONFIG environment variable. After installing the Traffic Manager,
the container's startup script searches for configuration documents within the "config" subdirectory of
the mounted volume and performs a one-time import of the configuration documents contained there.

To deploy a fully configured Traffic Manager inside a Docker container, use the following command:

Assumes the sample configuration document is saved as

/import/config/example-config.yaml

docker run --name=vtm-config-example \

 -v `pwd`/import:/import \

 -p 8080:80 \

 -p 9090:9090 \

 -e ZEUS_BASE_CONFIG=/import \

 -e ZEUS_EULA=accept \

 -e ZEUS_PASS=admin \

 --privileged \

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 14 of 44

Basic Usage

http://www.ivanti.com/company/legal

 --init \

 -t \

 -d \

 pulsesecure/vtm:<version>

The above example launches a Traffic Manager container named "vtm-config-example" that is
populated with the configuration specified in "/import/config/example-config.yaml". To verify that the
deployment was successful, make an HTTP request to port 8080 on your Traffic Manager’s primary IP
address or hostname. This should result in a "Hello World" response.

To see that the configuration has been correctly applied, access the Administration Interface (Admin UI)
of the Traffic Manager instance on port 9090.

Example for Standard Deployments

Standard software or virtual appliance deployments of the Traffic Manager include the Configuration
Importer tool as standard, but without built-in support for invoking it at install time.

An administrator can invoke the Configuration Importer manually from the command-line using the
following command:

Assumes the sample configuration document is saved as

/import/config/example-config.yaml

$ZEUSHOME/zxtm/bin/config-import --chdir /import ./config

In this example, the Configuration Importer uses "/import" as its base directory and imports the
configuration specified in any documents found in the "/import/config" directory.

Fully Managed Configuration Example
The following example shows how to use the Configuration Importer to fully manage a Traffic
Manager’s configuration within Docker, and additionally how to invoke the Configuration Importer on
standard deployments.

The example given here uses the same sample YAML configuration document shown in the one-time
import example, saved at the same filesystem location: "./import/config/example-config.yaml".

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 15 of 44

Basic Usage

http://www.ivanti.com/company/legal

Example Docker Deployment

When you deploy a Traffic Manager container, mount the import directory as a volume and specify the
mount path in the ZEUS_WATCHED_CONFIG environment variable. After installing the Traffic Manager,
the container imports the configuration documents stored in the "config" subdirectory of the mounted
volume. The Configuration Importer continuously watches for changes in the ZEUS_WATCHED_CONFIG
directory and automatically imports the updated configuration when such a change is detected.

To deploy a fully configuration-managed Traffic Manager inside a Docker container, use the following
command:

Assumes the sample configuration document is saved as

/import/config/example-config.yaml

docker run --name=vtm-config-example \

 -v `pwd`/import:/import \

 -p 8080:80 \

 -p 9090:9090 \

 -e ZEUS_WATCHED_CONFIG=/import \

 -e ZEUS_EULA=accept \

 -e ZEUS_PASS=admin \

 --privileged \

 --init \

 -t \

 -d \

 pulsesecure/vtm:<version>

The above example launches a Traffic Manager container named "vtm-config-example" that is
populated with the configuration specified in the watched directory (in this case,
"/import/config/example-config.yaml"). To verify that the deployment was successful, make an HTTP
request to port 8080 on your Traffic Manager’s primary IP address or hostname. This should result in a
"Hello World" response.

To see that the configuration has been correctly applied, access the Administration Interface (Admin UI)
of the Traffic Manager instance on port 9090.

Next, edit "./import/config/example-config.yaml" and change the rules section to:

rules:

- name: basic-response

 content: |

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 16 of 44

Basic Usage

http://www.ivanti.com/company/legal

 http.sendResponse("200 OK", "text/plain", "Hello New World\n",

"X-Served-By: Ivanti vTM");

Observe that the configuration has been updated by making a further HTTP request to port 8080, which
should now return "Hello New World".

Example with Standard Deployments

To watch for changes to configuration documents with software or virtual appliance deployments, use
the "watch-directory" tool supplied with the Traffic Manager. Specify the directory to watch, followed by
the command to run when any files in the directory change.

To watch for changes in the "/import" directory, and then apply those changes, run the following
command:

$ZEUSHOME/zxtm/bin/watch-directory /import --

$ZEUSHOME/zxtm/bin/config-import \

--chdir /import ./config

Object References
To dynamically fetch and include configuration values from external files into your configuration
documents, use the "valueFrom" construct. Use this mechanism to store items such as TrafficScript rules
and SSL certificates outside the main configuration document in their native format.

For example, a TrafficScript rule can be extracted into a separate file and accessed through "valueFrom",
as follows:

/import/data/hello-world.zts

http.sendResponse("200 OK", "text/plain", "Hello New World\n", "X-Served-

By: Ivanti vTM");

/import/config/example-config.yaml

version: 6.1

virtual_servers:

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 17 of 44

Basic Usage

http://www.ivanti.com/company/legal

/import/config/example-config.yaml

- name: example-service

properties:

basic:

enabled: true

port: 80

protocol: http

pool: discard

request_rules: [basic-response]

rules:

- name: basic-response

 content:

valueFrom:

fileRef:

name: data/hello-world.zts

For more details on how to reference external data from configuration documents, see Object
References.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 18 of 44

Basic Usage

http://www.ivanti.com/company/legal

Troubleshooting

Syntax Errors
The Configuration Importer tool checks the syntax of configuration documents as they are processed. If
there are syntax errors in any configuration document, the Configuration Importer detects them and
reports an error in the container logs without changing the Traffic Manager's configuration.

The Traffic Manager also displays this error on the Diagnose page of the Admin UI.

To dismiss a reported import error and return the Traffic Manager to a normal running state, click
Acknowledge and remove error state. An error is cleared automatically if a subsequent successful
import occurs.

To view import error details when applying configuration to a Docker container, view the container logs.

For example, for a container named "vtm-config-example", run the command:

docker logs vtm-config-example

In this example, the configuration document incorrectly refers to "virtual_services" instead of "virtual_
servers".

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 19 of 44

Troubleshooting

http://www.ivanti.com/company/legal

Semantic Errors
If a configuration document contains semantic errors such as a required setting not being present, the
Configuration Importer continues to import the configuration to the Traffic Manager with an error
shown in the import log. The Traffic Manager also shows a configuration error in the event log and
Diagnose page.

To check if the configuration was applied as you expected, see the Configuration Importer log after you
trigger an import:

Ivanti recommends frequently checking the Traffic Manager’s event log and Diagnose page to ensure
your configuration has been deployed correctly.

Audit Logs
Successful and unsuccessful import attempts are logged to the Traffic Manager's Audit Log.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 20 of 44

Troubleshooting

http://www.ivanti.com/company/legal

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 21 of 44

Troubleshooting

http://www.ivanti.com/company/legal

Relationship to Other Configuration
Interfaces
The Traffic Manager has a number of other configuration interfaces, such as the Admin UI, the REST API,
the CLI, and the SOAP API. All of these mechanisms rely on the Traffic Manager being deployed and
then iteratively configured until it is in the desired state.

When fully managing the configuration of your Traffic Manager, the Configuration Importer is an
alternative to, and a replacement for, these other configuration interfaces. The administrator makes
changes by altering the primary configuration documents, automatically triggering the updated
configuration to be applied to the Traffic Manager. The other configuration interfaces still provide the
current state of the configuration and the health of the Traffic Manager, but an administrator should
not normally update the configuration through these interfaces as any such changes are overwritten
when the next import is triggered.

During a one-time import, an administrator uses the Configuration Importer in conjunction with the
other configuration interfaces. After the one-time import supplies the initial configuration, the
administrator makes any further iterative changes through the Traffic Manager’s usual configuration
interfaces.

Importing configuration is a similar operation to restoring a backup, however the format of the
imported configuration is easier to maintain and version control than a backup file and follows the well-
documented REST API configuration schema.

The Configuration Importer supports layering of configuration documents to allow multiple sources of
Traffic Manager configuration to be merged together in a declarative way. This capability is similar to
the Traffic Manager's "Partial Backups" feature and the "zconf" utility, both of which support backup
and restore of subsets of the Traffic Manager configuration. However, partial backups do still build
configuration iteratively and have an internal format that is not as suitable for editing and maintenance
as configuration documents.

For more details on how to layer configuration across multiple documents, see Layering Configuration
Documents.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 22 of 44

Relationship to Other Configuration Interfaces

http://www.ivanti.com/company/legal

Comparison with the REST API
Configuration documents follow the same configuration schema as the Traffic Manager's REST API, with
a few notable differences described here.

YAML vs JSON
To write your configuration documents, use either YAML or JSON format. The Traffic Manager REST API
supports only JSON. The examples used in this guide are based around YAML due to its human-
readable format and suitability for storing configuration in a version control system.

Object Structure
When creating a new object using the REST API, you define the object’s properties in the body data of
an HTTP PUT request. The URL defines the API version and name of the new object.

For example, to create a new IP-based session persistence class using the REST API, you use a PUT
request with the following object to an endpoint such as "/api/tm/8.3/config/active/persistence/my_
persistence_class":

{

"properties": {

"basic": {

"type": "ip"

}

}

}

The equivalent configuration document in YAML is as follows:

version: 6.1

persistence:

- name: my_persistence_class

properties:

basic:

type: ip

The configuration definition in both cases contains a top level object named "properties", with all the
configuration keys nested below it in one or more sections.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 23 of 44

Comparison with the REST API

http://www.ivanti.com/company/legal

All settings defined within the "properties" section follow the REST schema. To view the schema, see the
Pulse Secure Virtual Traffic Manager: REST API Guide.

Creating Multiple Configuration Objects
The REST API requires a separate API call for each object you want to create, whereas a single
configuration document can hold the definition for the entire Traffic Manager configuration.

Configuration documents can contain sections for multiple object types, and multiple objects of the
same type can be specified as list items beneath the object type definition (using the "-" array item
identifier in YAML, or array syntax in JSON). For example:

version: 6.1

bandwidth:

- name: my_bandwidth_class

properties:

basic:

maximum: 10000

sharing: machine

persistence:

- name: my_ip_persistence_class

properties:

basic:

type: ip

- name: my_transparent_persistence_class

properties:

basic:

type: transparent

Defining Configuration Specific to a Traffic Manager
Instance
Configuration documents can include configuration specific to individual Traffic Managers through the
"traffic_managers" section. Each named object in this section refers to the hostname of a Traffic
Manager instance in the cluster. Such configuration can include, for example, networking or other
system level settings.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 24 of 44

Comparison with the REST API

http://www.ivanti.com/company/legal

To Identify the local Traffic Manager on which you run the import, without naming it explicitly, use the
special object name "local_tm". This feature is useful for orchestration platforms such as Docker or
Kubernetes where you might not know the instance hostname at the point you construct the
configuration document. For example:

version: 6.1

traffic_managers:

- name: local_tm

 properties:

snmp:

community: body

enabled: true

security_level: noauthnopriv

Unstructured Resources
Some configuration objects are not expressed as key/value pairs, but rather inline as raw text. Examples
of these include TrafficScript rules, SSL certificates, and custom monitor scripts.

When using the REST API, you upload such configuration objects using a PUT request with a content-
type of "application/octet-stream".

To present the raw data in a configuration document, use a "content" field. Declare the data either
inline or as an indented block using a YAML literal scalar (designated by the '|' indicator). The following
example expresses a TrafficScript rule:

rules:

- name: basic-response

content: |

http.sendResponse("200 OK", "text/plain", "Hello World\n", "X-

Served-By: Ivanti vTM");

For binary files, content can be base64 encoded with an "encoding: base64" field added to the object
definition. For details of the supported base64 type requirements, see RFC2045
(https://www.ietf.org/rfc/rfc2045.txt).

Alternatively, you can import values from an external file using the object reference syntax described in
Object References.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 25 of 44

Comparison with the REST API

https://www.ietf.org/rfc/rfc2045.txt
http://www.ivanti.com/company/legal

Validation
The Configuration Importer always applies a configuration that is syntactically correct. A syntactically
correct configuration with a semantic error, such as a port number being out of the valid port range, is
still applied, but the Traffic Manager reports an error and does not start the affected service.

This behavior is designed to ensure that the Traffic Manager's configuration is consistent with the
expected outcome of invoking the Configuration Importer, regardless of any historical state. The
Configuration Importer does not assume that the entity that generated the configuration is checking to
make sure it was accepted by the Traffic Manager.

In contrast, the REST API applies validation of individual configuration settings and rejects a PUT
request if a setting is invalid. The REST API assumes that whatever invoked the PUT request is also
checking to make sure it completed successfully.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 26 of 44

Comparison with the REST API

http://www.ivanti.com/company/legal

Importing Configuration into a Cluster
When running as a cluster, all Traffic Managers must have an identical copy of the configuration. When
using the Configuration Importer, the Traffic Manager supports two alternative methods of ensuring
the configuration of all cluster members remains consistent:

Replicating Configuration
When an administrator makes a configuration change through the Admin UI or the REST API, they
select a specific cluster member on which to make the change. The Traffic Manager then automatically
replicates that change out to all other members of the cluster.

The Configuration Importer can also operate under the same principle. An administrator selects a
cluster member on which to run the Configuration Importer, and the imported configuration is
automatically replicated out to all other cluster members. When configuration is entirely managed
through the Configuration Importer, you designate a single cluster member to watch for configuration
changes and apply them to the whole cluster.

Independent Cluster Members
As an alternative, provided each Traffic Manager has access to the same configuration documents, you
can instruct the Configuration Importer to not replicate configuration to the other cluster members. In
this situation, each cluster member must maintain its own configuration independently.

For Docker deployments, to have each container independently manage its own configuration, launch
the container with the ZEUS_CONFIG_IMPORT_ARGS environment variable set to "--no-replicate".

For other deployments, add the "--no-replicate" argument to the "config-import" tool when it is
invoked. For example:

$ZEUSHOME/zxtm/bin/watch-directory /import --

$ZEUSHOME/zxtm/bin/config-import \

--chdir /import --no-replicate ./config

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 27 of 44

Importing Configuration into a Cluster

http://www.ivanti.com/company/legal

Changing Settings that Require a Restart
This chapter discusses the difference between Traffic Manager software restarts and full host reboots.

Software Restarts
The Configuration Importer automatically restarts the Traffic Manager software on all cluster members
if a changed configuration setting requires a restart to take effect.

In some circumstances, you might want to disable this behavior and delay restarts to happen at a later
time, such as during a maintenance window. To disable automatic restarting of the software, supply the
"--no-restart" argument to the "config-import" tool, or add "--no-restart" to the ZEUS_CONFIG_
IMPORT_ARGS environment variable when launching a Docker container. By using this argument, you
must manually restart your Traffic Managers at the appropriate time for pending changes to take effect.

Host Instance Reboots
Some configuration changes might require a full host instance reboot to take effect. This is not an
automatic process and must be performed manually on all cluster members. Ivanti recommends you
schedule a full reboot to take place at a time of least impact to your services.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 28 of 44

Changing Settings that Require a Restart

http://www.ivanti.com/company/legal

Constructing Configuration Documents
This chapter describes how to set up configuration documents suitable for use with the Configuration
Importer. Contructing Configuration Documents Manually

To construct a configuration document suitable for use with the Configuration Importer, Ivanti
recommends using the following approaches:

• Using the REST API Guide: Consult the Pulse Secure Virtual Traffic Manager: REST API Guide
to find all the available configuration objects and their properties. This information can be used
to construct appropriate configuration documents to represent the desired Traffic Manager
configuration.

• Admin UI: Build and test the configuration using the Admin UI, then perform REST API calls to
retrieve the configuration for each object and write it into a configuration document.

Exporting a Configuration Document From the Admin UI
To obtain a pre-constructed configuration document representing the configuration of the current
Traffic Manager, click Services > Configuration Summary in the Admin UI. To generate a
configuration document, use the "Export Configuration document" section.

This functionality is also available for previously-saved configuration backups, through the
System > Backups page.

Exporting a configuration document representing the current configuration

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 29 of 44

Constructing Configuration Documents

http://www.ivanti.com/company/legal

To modify the appearance of a configuration document, use the following options:

Option Value Description

Format YAML Create the configuration document in human-readable
YAML text format.

JSON Create the configuration document in machine-
readable JSON text format.

Export Type Differences Include only those configuration changes made since
the Traffic Manager was first configured.

Full Include all configuration present on the Traffic
Manager, irrespective of whether the configuration was
set during initial configuration or at some time since.

Secrets Include Include all secret data, such as passwords and TLS
private keys.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 30 of 44

Constructing Configuration Documents

http://www.ivanti.com/company/legal

Option Value Description

A configuration document created with this option is
complete and ready to be used with the Configuration
Importer, but is unsafe to share publicly.
Ivanti strongly recommends taking additional security
measures when creating configuration documents with
this option selected.

Exclude Redact all secret data.
A configuration document created with this option is
safe to share publicly (as allowed by your organizational
security policy), or to check into a version control
system. However, to properly configure a new Traffic
Manager instance from this configuration document,
you must first edit in all required secret data items.

Hash Replace all secret data items with a hash of their
contents.
Use this option to compare configuration document
versions and to observe when secret data might have
changed, without revealing the secrets to casual
observers.
Ivanti recommends that a document created with this
option should be kept securely to minimize the risk of
offline password cracking and other such attacks.

To generate a configuration document based on the selected options, click one of the following
buttons:

• To download the configuration document to your local workstation, click Download.

• To display the configuration document in your browser, click View in Browser.

Exporting a Configuration Document From the Command-
line
An administrator can also generate a configuration document from the command-line using the Traffic
Manager’s config-export program. For example:

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 31 of 44

Constructing Configuration Documents

http://www.ivanti.com/company/legal

Exports a configuration document to /import/config/example-

config.yaml

$ZEUSHOME/zxtm/bin/config-export --filename "example-config.yaml"

 --format yaml

 --secrets exclude

 --chdir /import

 ./config

For a complete list of the available options, type:

$ZEUSHOME/zxtm/bin/config-export --help

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 32 of 44

Constructing Configuration Documents

http://www.ivanti.com/company/legal

Layering Configuration Documents
The Configuration Importer can collect together and import multiple configuration documents at the
same time if instructed to import from a directory. The Configuration Importer orders the documents
alphabetically, and then constructs the configuration by layering the documents one on top of the
other. You can build up configuration for the same object, such as a virtual server, over multiple
documents, with later documents masking settings applied by earlier documents.

The following two example configuration documents reference the same "example-service" virtual
server object. The "10-base-service.yaml" file is applied first and creates the base configuration for the
service. The file "20-set-rules.yaml" is alphabetically second in order of priority and layered on top of
the base configuration to add a TrafficScript rule to the virtual server, and to disable web caching.

10-base-service.yaml

version: 6.1

virtual_servers:

- name: example-service

properties:

basic:

enabled: true

port: 80

protocol: http

pool: example-pool

web_cache:

enabled: true

pools:

- name: example-pool

properties:

basic:

passive_monitoring: true

monitors: ["Simple HTTP"]

nodes_table:

- node: application-server-1:8080

- node: application-server-2:8080

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 33 of 44

Layering Configuration Documents

http://www.ivanti.com/company/legal

20-set-rules.yaml

version: 6.1

virtual_servers:

- name: example-service

properties:

basic:

request_rules: [set-host]

web_cache:

enabled: false

rules:

- name: set-host

content: |

http.setHeader("Host", "app1.example.com");

Importing the two documents applies configuration equivalent to the following single document:

flattened-config.yaml

version: 6.1

virtual_servers:

- name: example-service

properties:

basic:

enabled: true

port: 80

protocol: http

pool: example-pool

request_rules: [set-host]

web_cache:

enabled: false

pools:

- name: example-pool

properties:

basic:

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 34 of 44

Layering Configuration Documents

http://www.ivanti.com/company/legal

flattened-config.yaml

passive_monitoring: true

monitors: ["Simple HTTP"]

nodes_table:

- node: application-server-1:8080

- node: application-server-2:8080

rules:

- name: set-host

content: |

http.setHeader("Host", "app1.example.com");

Observe that both files specify the "virtual_servers.properties.web_cache.enabled" setting, although the
Configuration Importer applies the "false" value in "20-set-rules.yaml" last, so this is the resultant
setting applied to the Traffic Manager.

Ivanti recommends limiting overlaying of specific settings within an object to basic scalar
values. Layering semantics for non-scalar settings, such as lists or tables, is presently
unspecified.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 35 of 44

Layering Configuration Documents

http://www.ivanti.com/company/legal

Object References
This chapter describes how to reference external data and objects from within your configuration
definition.

Referencing External Objects
The Configuration Importer enables you to reference externally-stored data in your configuration
documents. This method can help keep your configuration documents neater, and allows configuration
such as TrafficScript rules and certificates to be stored in their native format. It also allows data to be
pulled in from other sources when needed. For example, in a Kubernetes environment, passwords and
certificates could be mounted from Secret objects and referenced inside your Traffic Manager
configuration definition.

To reference externally-stored data in your configuration, use the "valueFrom" construct. The example
that follows shows how to import a TrafficScript rule stored in a separate file:

/import/config/rule-config.yaml

rules:

- name: example-rule

content:

valueFrom:

fileRef:

name: data/example-rule.zts

/import/data/example-rule.zts

log.info("Hello World");

http.sendResponse("200 OK", "text/plain", "Hello World", "X-Served-By:

Ivanti vTM");

The Configuration Importer replaces the valueFrom statement in the configuration document with the
literal text of the rule and applies the resulting configuration to the Traffic Manager.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 36 of 44

Object References

http://www.ivanti.com/company/legal

Supported valueFrom Methods
The Configuration Importer supports the following valueFrom methods:

Supported valueFrom Methods

fileRef Import all data from the file found at the path specified in the "name" property.
Path references are relative to the directory from which the Configuration
Importer was invoked, or relative to the "--chdir" argument if one was specified.
When launching a Docker container, path references are relative to the ZEUS_
BASE_CONFIG or ZEUS_WATCHED_CONFIG environment variable.

Changes to Referenced Objects
If a referenced object is inside the directory being watched for changes, a subsequent change to the
object causes the Configuration Importer to automatically update the Traffic Manager's configuration. If
the referenced object is outside the watched directory, changes are picked up the next time the
Configuration Importer runs for any other reason.

Example: Importing TLS Certificates from Kubernetes
Secrets
A common way to manage TLS keys and certificates in Kubernetes is to store them in Secret objects and
then mount those secrets into the container that uses them. In Kubernetes, mounting a TLS Secret
results in the private key being mounted as "tls.key" and the certificate being mounted as "tls.crt". For
example, the configuration document and TLS files for the service could be mounted as follows:

/import/

├── config/

| └── vtm-config.yaml

└── tls/

└── example-service/

├── tls.key

└── tls.crt

Based on this file structure, the following configuration document configures a virtual server to present
the certificate and decrypt the incoming traffic:

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 37 of 44

Object References

http://www.ivanti.com/company/legal

vtm-config.yaml

virtual_servers:

- name: example-service

properties:

basic:

enabled: true

port: 443

protocol: http

pool: example-service-pool

ssl_decrypt: true

ssl:

server_cert_default: example-service-cert

ssl:

server_keys:

- name: example-service-cert

properties:

basic:

public:

valueFrom:

fileRef:

name: tls/example-service/tls.crt

private:

valueFrom:

fileRef:

name: tls/example-service/tls.key

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 38 of 44

Object References

http://www.ivanti.com/company/legal

Snapshots
This chapter discusses configuration snapshots and how to create them in Docker and other
environments.

Introducing Configuration Snapshots
The Traffic Manager takes a snapshot of its configuration when it is first deployed. This base
configuration snapshot incorporates all the environment-specific configuration that is established
during initial configuration, such as the host’s timezone, the ports on which administrative services are
listening, and tunings to support particular cloud environments.

When the Configuration Importer runs, the Traffic Manager's configuration is reset to this initial state
before the imported configuration is applied.

If you need to change this base configuration, you can apply static configuration to your Traffic
Manager such as logging endpoints, security settings, and cache sizes, and then create an updated
snapshot. Your changes become part of the base configuration snapshot and do not need to be
specified in imported configuration documents.

Snapshotting Configuration in Docker
If you deploy a Docker container with the ZEUS_BASE_CONFIG environment variable set, the Traffic
Manager creates a configuration snapshot after the base configuration has been applied. Any
additional configuration imported from the directory specified in the ZEUS_WATCHED_CONFIG
environment variable is layered on top of this base configuration.

In practice, this is relevant only if the base configuration and watched configuration directories are
different, such that the watched configuration is applied on top of the base configuration. For example:.

/base/config/system-settings.yaml

version: 6.1

global_settings:

 properties:

 session:

 ip_cache_size: 65535

 web_cache:

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 39 of 44

Snapshots

http://www.ivanti.com/company/legal

/base/config/system-settings.yaml

 size: 2GB

 max_file_size: 50MB

/watched/config/my-service.yaml

version: 6.1

virtual_servers:

- name: example-service

 properties:

 basic:

 enabled: true

 port: 80

 protocol: http

 pool: discard

 request_rules: [basic-response]

rules:

- name: basic-response

 content: |

 http.sendResponse("200 OK", "text/plain", "Hello World\n", "X-Served-

By: Ivanti vTM");

Deploying a container in Docker using these configuration documents results in the base configuration
in "system-settings.yaml" being applied to the Traffic Manager initially, the base configuration snapshot
being updated, and then the configuration in "my-service.yaml" being applied on top of that base
configuration. Any changes to configuration in the "watched" directory are applied on top of the base
configuration. However, changes to configuration in the "base" directory after the container is launched
have no effect as that directory is not being watched for changes.

To deploy the container, use the following command

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 40 of 44

Snapshots

http://www.ivanti.com/company/legal

Deploy container with base and watched configuration

Assumes the sample configuration documents shown above are saved as

./base/config/system-settings.yaml and ./watched/config/my-service.yaml

docker run --name=vtm-config-example \

 -v `pwd`/base:/base \

 -v `pwd`/watched:/watched \

 -p 8080:80 \

 -p 9090:9090 \

 -e ZEUS_BASE_CONFIG=/base \

 -e ZEUS_WATCHED_CONFIG=/watched \

 -e ZEUS_EULA=accept \

 -e ZEUS_PASS=admin \

 --privileged \

 --init \

 -t \

 -d \

 pulsesecure/vtm:<version>

Snapshotting Configuration in Other Deployments
For other deployment types, take a snapshot after the Traffic Manager has been deployed to create a
new base configuration snapshot.

To snapshot the current Traffic Manager configuration, run the following command:

$ZEUSHOME/zxtm/bin/config-snapshot

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 41 of 44

Snapshots

http://www.ivanti.com/company/legal

Stateful Settings
A small number of configuration settings are considered "stateful" and are not reset to a previous value
when reverting to the snapshot configuration. Such settings are generally managed by an external
entity, such as Pulse Secure Services Director.

You can override stateful settings in configuration documents, but if the setting is later removed from
the configuration document its value is not reverted in the Traffic Manager's configuration.

Some examples of stateful settings that the Configuration Importer does not reset include:

• An FLA license pushed by the Services Director

• Analytics Export configuration

• Management-plane user groups

• Management-plane user authenticators

• The cluster ID

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 42 of 44

Stateful Settings

http://www.ivanti.com/company/legal

Upgrades
This chapter discusses the effect of Traffic Manager version upgrades on the Configuration Importer.

Importing Configuration to Upgraded Traffic Managers
As described in Snapshots, the Configuration Importer requires a snapshot of the configuration when
the Traffic Manager is first deployed in order to establish a baseline on which to apply the imported
configuration. As such, the Configuration Importer is not able to apply configuration to a Traffic
Manager that was upgraded from a version prior to present version as no such snapshot was taken at
the time the Traffic Manager was first deployed.

Ivanti recommends you deploy a new Traffic Manager instance at the latest version and use the
Configuration Importer with the new instance. However, if necessary, create a snapshot manually on the
upgraded instance using the instructions described in Snapshotting Configuration in Other
Deployments.

Upgrading Traffic Managers with Imported Configuration
Ivanti recommends that upgrades are performed by creating a new Traffic Manager instance at the
latest version and using the Configuration Importer to apply the same configuration as applied to the
older instance.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 43 of 44

Upgrades

http://www.ivanti.com/company/legal

Configuration Document Versioning
Each configuration document contains a "version" field that references the API schema version for the
configuration in the document. The Traffic Manager into which the configuration is imported must
support the API schema version of the configuration in the document.

Where possible, the Configuration Importer translates configuration from the version of the API schema
referenced in the configuration document to the latest supported API schema version. If the conversion
cannot be performed (for example, if a configuration setting is removed from the API), the
Configuration Importer logs a warning and does not alter the current running configuration.

This version of the Traffic Manager supports only API schema version 8.3.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 44 of 44

Configuration Document Versioning

http://www.ivanti.com/company/legal

	Preface
	Document conventions
	Requesting Technical Support

	Introduction
	About the Configuration Importer
	About the Configuration Importer
	One-Time Import
	Full Configuration Management

	Basic Usage
	Introducing Configuration Documents
	Structuring Configuration Documents for Import
	One-time Configuration Import Example
	Fully Managed Configuration Example
	Object References

	Troubleshooting
	Syntax Errors
	Semantic Errors
	Audit Logs

	Relationship to Other Configuration Interfaces
	Comparison with the REST API
	YAML vs JSON
	Object Structure
	Creating Multiple Configuration Objects
	Defining Configuration Specific to a Traffic Manager Instance
	Unstructured Resources
	Validation

	Importing Configuration into a Cluster
	Replicating Configuration
	Independent Cluster Members

	Changing Settings that Require a Restart
	Software Restarts
	Host Instance Reboots

	Constructing Configuration Documents
	Exporting a Configuration Document From the Admin UI
	Exporting a Configuration Document From the Command-line

	Layering Configuration Documents
	Object References
	Referencing External Objects
	Supported valueFrom Methods
	Changes to Referenced Objects
	Example: Importing TLS Certificates from Kubernetes Secrets

	Snapshots
	Introducing Configuration Snapshots
	Snapshotting Configuration in Docker
	Snapshotting Configuration in Other Deployments

	Stateful Settings
	Upgrades
	Importing Configuration to Upgraded Traffic Managers
	Upgrading Traffic Managers with Imported Configuration

	Configuration Document Versioning

